--- title: "qualitycontrol" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{qualitycontrol} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r, include = FALSE, eval = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) ``` # `qualitycontrol` The goal of `qualitycontrol` is to set a data quality control framework ## Installation You can install the `qualitycontrol` from [GitHub](https://github.com/) with: ```{r, eval = FALSE} # install.packages("devtools") devtools::install_github("luisgarcez11/qualitycontrol") ``` ### Data The `als_data` dataset will be used to guide you through the package functionality. This data is not real, but based on data retrieved from Amyotrophic Lateral Sclerosis patients. ```{r example, eval = TRUE} library(qualitycontrol) als_data ``` ### QC mapping The `als_data_qc_mapping` is an `R list` which contains 3 tables specifying all the tests used for quality control. #### Missing ```{r} als_data_qc_mapping$missing ``` #### Inconsistencies ```{r} als_data_qc_mapping$inconsistencies ``` #### Out of range values ```{r} als_data_qc_mapping$range ``` ### `qc_data` function `qc_data` takes as arguments the data to be quality controlled and the QC mapping containing the tests to be applied. ```{r} qc_data(als_data, als_data_qc_mapping) ``` This will return a table with all the findings. If you want to save it, you can specify the path to be saved in `output_file`.